Opti 501 Final Exam Solutions 12/15/2020
Problem 1) n,(w) = \/ua((u)sa((u) = \/sa((u). Similarly, n,(w) = \/ub (w)ey(w) = \/sb (w).

a) kO =kX+ky+ kéi)ﬁ = ng(w)(w/c)(sinf@ X — cos 6 2).

The dispersion relation

k® = kR + kY + k"2 = ng(w)(@/c)(sinO X + cos 02). _| ki + I = (w/c)?n’(w) is
used here. Also invoked is
k©® = k. x + kyj) + kgt)ﬁ =ng(w)(w/c)sinfx + kgt)ﬁ_ the generalized Snell’s law.

b) Dispersion relation: k-k=k?=(w/c)u(we,(w) » k2+k?=(w/c)*ni(w)

> kY =4/ )~k - kY = ~i(w/oynE(w)sin? § - nj(w).

Since 8 > ., we have n, sin@ > n, sin 8, = n,. Therefore, k2 is negative, which makes

its square root imaginary. We have chosen the negative sign for k;t) to ensure the exponential
decay (as opposed to growth) of the evanescent field away from the interface (i.e., as z = —o0).
This is now guaranteed, since the z-dependent factor in the expression of the fields, namely,

exp(ikPz) = exp[(w/c)yn2(w) sin? 6 — n2(w) z],

approaches zero when z — —oo,

) BO@,6) = pou(w)Hy,y explik® - 1 — wt)].

For V- B® = ik® - p u(w)H,,y exp[i(k® - r — wt)] to vanish it is necessary to have
k® -5 = (k& + k2) - 9 = 0, which obviously holds, since k® has no y-component.

d) VxH=9,D - ik®xHY = —iwe,e,(w)E® |replacing &, with 1/(cZ,) |
= (kX +kP2) X Hyyy = —(w /c%/o)ng (@) (EoxX + Eo + Eo,2).
Equating the x, y, and z components appearing on the two sides of the above equation, we find
i(w/c)yn2(w) sin? 0 — nZ(w)H,, = —(w/cZ)nZ(w)E,,,
E,, =0,

(@/)na(w) sin 8 Hyy = —(w/cZ,)n (w)Eyy.

Further simplification now yields

Eor = —1ZyHyy/n3 (@) sin? 6 — n (w) /nf(w),
E,, = — Z,Hoyng(w) sin 6/nj (w).
Complete expressions for the evanescent E and H fields may finally be written down, as follows:

EO(r,t) = (B, & + E,,2) expliliyx + kP z — wt)]

= —(ZOHOy/nb)[i\/(na sinf/n,)? — 1% + (n, sin H/nb)ﬁ]

X exp[(nba)/c)\/(na sinf/ny,)? —1 Z] explilk,x — wt)].



HOrt) = H,y exp[(nbw/c)\/(na sinf/ny)? —1 z] expli(k,x — wt)].

e) In the absence of free charges (i.e., P = 0), Maxwell’s 1% equation (within the transmission
medium) reduces to V- D® = g,¢,(w)V - E® = 0. For the evanescent wave, the satisfaction

this equation requires that k® - E gt) vanish. This constraint is readily satisfied, since we have
k© . E(()t) = kyE,, + k;t)Eoz = (ngw/c)sin 6 [—i(ZOHOy/nb)\/(na sinf/ny)? — 1]
+[—i(w/c)y/n2 sin2 @ — nZ](—Z,H,yn, sin8/n3) = 0.

As for Maxwell’s 3" equation, V x E = —d, B, we must show that k® x E (()t) = wu,u(w)H ((,t).

kVE,, — kyE,, = [—i(w/c)ynZsin? 0 — n2][— iZ,H,,\/n2 sin? 6 — nZ /n?]
—(nqw/c) sin O (—Z,Hy,n, sin 6 /nf)
= —(w/c)[(ngsin/ny)* — 1]Z,H,, + (w/c)(ny sin 8 /n,)?Z,H,,

= (w/c)ZOHOy = wﬂoHOy-

f) (S(T, t)) = 1/2R€(E X H*) = %Re[(EOx? + E022) X H(;kyj\’] eXp(zlkét)lz)

= YRe(E,,Hq 2 — E,,Hq, ) exp[2(w/c){/n2 sin? 6 — n2 z]

= Zy|Hoy |2 (ng sin 8/2n2) exp[(2npw/c)y/ (g sin0/n,)% — 1 2| 2.

Note that the z-component of the time-averaged Poynting vector has disappeared from the
above equation since onH(;ky is purely imaginary. Also, the Poynting vector has no y-component.
The energy flow rate does have a component along the x-axis, which rapidly decays as z = —oo.




Problem 2) a) From the dispersion relation, the magnitude of the k-vector in free space is found
to be k = w/c. Considering that both k; and k; are in the xz-plane (i.e., k, = 0), we will have

k, = (w/c)(cosB8 X +sinb 2). (1)
E,(r,t) = E, expli(k; - r — wt)] = E,yexpli(w/c)(xcos O + zsin 6 — ct)]. )
H (r,t) = H,, expli(k, - r — wt)]
=(E,/Z,)(—sinO X + cos 0 2) expli(w/c)(xcos O + zsin 6 — ct)]. 3)
Similarly,
k, = (w/c)(cosf X —sinf z). 4)

E,(r,t) = E,, expli(k, - — wt)] = E,y exp[i(w/c)(x cosO — zsin 6 — ct)]. ®)
H,(r,t) = H,, exp[i(k; - 7 — wt)]
= (E,/Z,)(sinB X+ cos 0 Z) expli(w/c)(xcosB — zsin O — ct)]. (6)

b) Considering that H, = 0 and that H, and H, do not depend on the y-coordinate, the expression
of the curl of H (evaluated in the plane of the sheet at z = 0) is simplified, as follows:

~ 2Eysin®  iEqwcos? 0\ . -
VxH=(d,H, —0d,H,)y = (— °Z — = 0 ~ )y eilw/c)(xcosO—ct) (7)
—— —— 0 oC
l | ordinary differentiation of H, with respect to x, since H, is continuous at z = 0 |

| 0,H, = AH, /Az = [H,(x,z = d/2,t) — He(x,z = —d/2,0)]/d |

Since D(r,t) = &,E + P = g,E,ye!(@/xcosb=ct) 4 p 5oiliox-wt=¢o) "equating V x H of
Eq.(7) with 0,D = —iwD(r,t) reveals that k, = (w/c) cos 6.

c) Continuity of E is satisfied, as the E-field on both sides of the sheet is E,y eilw/c)(x cosf-ct),
This is also the E-field inside the sheet, acting on the electric dipoles of the material.

Similarly, the continuity of B is automatically satisfied, as the perpendicular B-field on
both sides of the sheet is seen from Eqs.(3) and (6) to be u,H, = (E,/c) cos 8 el(@/e)x cosb—ct)

The tangential H-field (i.e., H,) is discontinuous at the surface of the sheet, being equal to
+(E,/Z,) sin @ ei(@/)xcosd-ct) o the left- and right-hand sides, respectively; see Eqs.(3) and
(6). Inside the dielectric material, the D-field is D(r,t) = (g,E, + P,e " 1¢0)yell@w/O)xcosb-ct)
Considering that, in the absence of free currents (i.e., Jpee = 0), VX H = 0;D = —iwD, and that
the sheet thickness d is sufficiently small, we arrive at

2E; sin 6

a = iw(&,E, + P,e”1¢0), (8)

The approximate equality in the above equation becomes exact in the limit when d — 0. The
near equality in Eq.(8) could also be obtained with the aid of Eq.(7), where the first term on the
right-hand side of Eq.(7) dominates the second term when d < ¢/w = 4,/2m.

d) For the incident beam at the location of the sheet (i.e., at z = 0), we have

(inc)

v x Hno) — atD(i“C) — _inOE(inC) — (iEO “’)y pl(@/0)(x cosf—ct) 9)

ZOC



The above contribution to the curl of the H-field at z = 0 should now be added to Eq.(7).
However, for d < ¢/w = 4,/2m, we may ignore this contribution of the incident beam, just as
we ignored the second term on the right-hand side of Eq.(7). Consequently, for a sufficiently thin
sheet, V' X H will be dominated by the discontinuity in H across the sheet produced by the two

radiated plane-waves. Given that D(r,t) = eos(a))(Eginc) + E,)yel@/0xcosb=ct) anplication
of Maxwell’s 2™ equation, V x H = ,D = —iwD, now yields

(2E, sin 8/Z,d)e!(@/c)(xcosf—ct) ~ ia)eos(a))(Eo(inc) + E,)ei(@/c)(xcosf—ct), (10)

Solving the above equation for the reflected field amplitude E,, we find

E(ginc)

) o = Te7a)
Eo= 1+ilzcsinb/oe(@al E /B, = ne(w)d + idg sin 6 (11)

e) The transmitted E-field is readily found from Eq.(10), as follows:

Eo(trans) _ Eginc) +E, = (2Ey/Zyd) sin 6 N Eo(trans)/EO(inc) ~ idgsin@ (12)

iwege(w) T me(w)d + iy sin 0

Digression. Setting 8 = 45°, and £(w) = 4,/(V2nd), the reflection coefficient obtained from Eq.(11) will be

E,/EM = —1/(1 4 1) = 13/ /2. (13)
Similarly, Eq.(12) yields the transmission coefficient, as follows:
ES™) JEM) = i/(1 + 1) = el™/*/V2. (14)

Both the reflected and transmitted E-field amplitudes are seen to be 1/+/2 times that of the incident E-field.
While the reflected E-field is phase-shifted (relative to the incident E-field) by 135°, the relative phase-shift of the
transmitted E-field is 45°. The thin dielectric sheet thus exhibits the essential characteristics of a 50/50 beam-
splitter. Note that, for this to hold to a good approximation, the required value of &(w), namely, A,/(v/2nd), may
have to be impractically large, given that d needs to be substantially smaller than the incident wavelength. In fact,
recalling that n(w) = /€(w), the relation between d and the wavelength 4,/n inside the dielectric medium will be
A/nd = v2mn. For d to be only one-tenth of A,/n, it will be necessary to have n = 2.25.




